Microeconomics Pre-sessional September 2016

Sotiris Georganas
Economics Department
City University London

Organisation of the Microeconomics Pre-sessional

\square Introduction
\square Demand and Supply
\square Consumer Theory 11:25-13:00

Lunch Break
ㅁ Problems - Refreshing by Doing
\square Theory of the Firm 14:30-15:30 Break

- Problems - Refreshing by Doing 15:45-16:30

Consumer Theory

- Description of Consumer Preferences
- Utility Function
- Indifference Curves
- Marginal Rate of Substitution
- Consumer Maximisation Problem
- Individual and Aggregate Demand Curves

Description of Consumer Preferences

Consumer Preferences tell us how the consumer would rank (that is, compare the desirability of) any two combinations or allotments of goods, assuming these allotments were available to the consumer at no cost

These allotments of goods are referred to as baskets or bundles. These baskets are assumed to be available for consumption at a particular time, place and under particular physical circumstances.

Basket of Food and Clothing

Units of
Clothes

$$
A \equiv(1,5) \quad C \equiv(4,5)
$$

Units of Food

Properties of Consumer Preferences

Completeness Preferences are complete if the consumer can rank any two baskets of goods (A preferred to B; B preferred to A; or indifferent between A and B)

Transitivity Preferences are transitive if a consumer who prefers basket A to basket B, and basket B to basket C also prefers basket A to basket C

Monotonicity Preferences are monotonic if a basket with more of at least one good and no less of any good is preferred to the original basket (more is better?)

The Utility Function

The utility function assigns a number to each basket so that more preferred baskets get a higher number than less preferred baskets

Utility is an ordinal concept: the precise magnitude of the number that the function assigns has no significance

Example Basket of One Good

Marginal Utility

Marginal utility of a good x is the additional utility that the consumer gets from consuming a little more of x when consumption of all the other goods in the consumer's basket remains constant

$$
\begin{aligned}
& \Delta U / \Delta x(y \text { held constant })=M U_{x} \\
& \Delta U / \Delta y(x \text { held constant })=M U_{y}
\end{aligned}
$$

Marginal utility is measured by the slope of the utility function
The principle of diminishing marginal utility states that marginal utility falls as the consumer gets more of a good

Example Basket of One Good The more, the better?

Example Basket of One Good The more, the better?

Example Basket of One Good Diminishing marginal utility?

Indifference Curves

An Indifference Curve (or Indifference Set) is the set of all baskets for which the consumer is indifferent

An Indifference Map illustrates a set of indifference curves for a given consumer

Example
 Single Indifference Curve

Properties of Indifference Maps

Completeness
 Each basket lies on one indifference curve

Properties of Indifference Maps

Completeness Each basket lies on one indifference curve

Transitivity
Indifference curves do not cross

Properties of Indifference Maps

Properties of Indifference Maps

Completeness

Transitivity

Monotonicity

Each basket lies on one indifference curve

Indifference curves do not cross

Indifference curves have negative slope and are not "thick"

Properties of Indifference Maps

Properties of Indifference Maps

Assumption
 Average Preferred to Extremes

What does the slope mean?

Marginal Rate of Substitution

The marginal rate of substitution is the decrease in good y that the consumer is willing to accept in exchange for a small increase in good x (so that the consumer is just indifferent between consuming the old basket or the new basket)

The marginal rate of substitution is the rate of exchange between goods x and y that does not affect the consumer's welfare
$M R S_{x, y}=-\Delta y / \Delta x$ (for a constant level of utility)

$$
\mathrm{MRS}_{x, y}=\frac{\mathrm{MU}}{\mathrm{x}} \mathrm{MU}_{\mathrm{y}}
$$

Example Marginal Rate of Substitution

Example Marginal Rate of Substitution

Indifference curves (usually) exhibit diminishing rate of substitution

The more of good x you have, the less of good y you are willing to give up to get a little more of good x

The indifference curves get flatter as we move out along the horizontal axis and steeper as we move up along the vertical axis

Special Functional Forms

1. Cobb-Douglas: $U(x, y)=A x^{\alpha} y^{\beta}$
where: $\alpha+\beta=1 ; A, \alpha, \beta$ positive constants
2. Perfect substitutes $U(x, y)=a x+b y$
3. Perfect complements $U(x, y)=\min \{a x, b y\}$
4. Quasi-linear: $U(x, y)=v(x)+$ by

1. Cobb-Douglas: $U=A x^{\alpha} y^{\beta}$

where: $\alpha+\beta=1 ; A, \alpha, \beta$ positive constants

MRS =

2. Perfect substitutes $U(x, y)=a x+b y$

3. Perfect complements $U(x, y)=\min \{a x, b y\}$

4. Quasi-linear: $U(x, y)=v(x)+$ by

Where: b is a positive constant.
$M U_{x}=v^{\prime}(x), M U_{y}=b, \quad M R S x . y=v^{\prime}(x) / b$

The Budget Constraint

Assume only two goods available (x and y)
$\begin{array}{ll}P_{x} & \text { Price of } x \\ P_{y} & \text { Price of } y \\ I & \text { Income }\end{array}$
Total expenditure on basket $(X, Y): P_{x} X+P_{y} Y$
The basket is affordable if total expenditure does not exceed total income:

$$
P_{x} X+P_{y} Y \leq I
$$

Example A Budget Constraint

Y, Clothes
$I / P_{Y}=5 \bigwedge^{4}$

Two goods available: X and Y

$$
\begin{aligned}
& I=\$ 10, P_{x}=\$ 1, P_{y}=\$ 2 \\
& 1 X+2 Y=10 \text { Or } Y=5-1 / 2 X
\end{aligned}
$$

Slope - $\mathbf{P}_{\mathrm{X}} / \mathbf{P}_{\mathrm{Y}}=\mathbf{- 1 / 2}$

Definitions

The set of baskets that are affordable is the consumer's budget set:

$$
P_{x} X+P_{y} Y=I
$$

The budget constraint defines the set of baskets that the consumer may purchase given the income available:

$$
P x X+P y Y \leq I
$$

The budget line is the set of baskets that are just affordable:

$$
Y=I / P_{y}-\left(P_{x} / P_{y}\right) X
$$

Example A Change in Income

Example

A Change in Price (good Y)

Consumer Choice

Assume:

- Only non-negative quantities
- "Rational" choice: The consumer chooses the basket that maximizes his satisfaction given the constraint that his budget imposes

Consumer's Problem:

> Max $U(X, Y)$
> subject to: $P x X+P y Y \leq I$

Solving the Consumer Choice

Consumer's Problem:

$$
\begin{gathered}
\operatorname{Max} U(X, Y) \\
\text { subject to: } P x X+P y Y \leq I
\end{gathered}
$$

The solution could be:
i) Interior solution (graphically and/or algebraically)
"Tangency condition"
i) Corner solution (graphically)

Interior Consumer Optimum

Interior Consumer Optimum

Example

Interior Consumer Optimum

September 16

Optimization:

Tangency condition

$$
M R S=-M U_{x} / M U_{y}
$$

Slope of budget line $-P_{x} / P_{y}$
Optimality implies:
MRS has to equal slope of budget
So optimal choice:

$$
M U_{x} / M U_{y}=P_{x} / P_{y}
$$

Corner Consumer Optimum

A corner solution occurs when the optimal bundle contains none of one of the goods

The tangency condition may not hold at a corner solution

How do you know whether the optimal bundle is interior or at a corner?

- Graph the indifference curves
- Check to see whether tangency condition ever holds at positive quantities of X and Y

Example Interior Consumer Optimum

$$
\begin{aligned}
& U(X, Y)=\min (X, Y) \\
& I=\$ 1000 \\
& P_{X}=\$ 50 \\
& P_{Y}=\$ 200
\end{aligned}
$$

Budget line
$Y=\$ 5-X / 4$

Example Corner Consumer Optimum

Individual Demand Curves

The price consumption curve of good \mathbf{x} is the set of optimal baskets for every possible price of good x, holding all other prices and income constant

Example

 A Price Consumption Curve
Y (units)

Example A Price Consumption Curve

Y (units)

Example A Price Consumption Curve

Y (units)

Example

A Price Consumption Curve

Example Individual Demand Curve

Note:

The consumer is maximizing utility at every point along the demand curve

The marginal rate of substitution falls along the demand curve as the price of x falls (if there was an interior solution).

As the price of x falls, utility increases along the demand curve.

Remember...
 A Price Consumption Curve

Income Consumption Curve

The income consumption curve of good \mathbf{x} is the set of optimal baskets for every possible level of income.

We can graph the points on the income consumption curve as points on a shifting demand curve.

Engel Curves

The income consumption curve for good x also can be written as the quantity consumed of good x for any income level.

This is the individual's Engel Curve for good x.

> When the income consumption curve is positively sloped, the slope of the Engel curve is positive.

Definitions of good

- If the income consumption curve shows that the consumer purchases more of good x as her income rises, good x is a normal good.
- Equivalently, if the slope of the Engel curve is positive, the good is a normal good.
- If the income consumption curve shows that the consumer purchases less of good x as her income rises, good x is an inferior good.
- Equivalently, if the slope of the Engel curve is negative, the good is an inferior good.

How does a change in price affect the individual demand?

- So far, we have used a graphical approach.
- Here, we refine our analysis by breaking this effect down into two components:
- A substitution effect
- An income effect

Substitution effect

As the price of x falls, all else constant, good x becomes cheaper relative to good y . This change in relative prices alone causes the consumer to adjust his/ her consumption basket. This effect is called the substitution effect.

- Always negative if the price rises
- Always positive if the price falls

Income effect

- Definition: As the price of x falls, all else constant, purchasing power rises. This is called the income effect of a change in price.
\Rightarrow The income effect may be positive (normal good) or negative (inferior good).

Substitution + Income effects

Usually, a move along a demand curve will be composed of both effects.

- Graphically, these effects can be distinguished as follows...

Example: Normal Good: Income and

 Substitution Effects

Example: Normal Good: Income and

 Substitution Effects$$
\begin{gathered}
\text { Step 2: Find the final basket } C \text {. } \\
\text { Slope of } B L_{1}=-\frac{P_{x_{1}}}{P_{y}} \\
x_{A}
\end{gathered}
$$

Example: Normal Good: Income and

 Substitution Effects

Example: Inferior Good: Income and Substitution Effects

If a good is so inferior that the net effect of a price decrease of good x, all else constant, is a decrease in consumption of good x, good x is a Giffen good.
-For Giffen goods, demand does not slope down.
-When might an income effect be large enough to offset the substitution effect? The good would have to represent a very large proportion of the budget.

Example: Giffen Good: Income and Substitution Effects

Example: Giffen Good: Income and Substitution

 Effects

Aggregate Demand

The market, or aggregate, demand function is the horizontal sum of the individual demands.

In other words, market demand is obtained by adding the quantities demanded by the individuals (or segments) at each price and plotting this total quantity for all possible prices.

Network externalities

If one consumer's demand for a good changes with the number of other consumers who buy the good, there are network externalities.

- If one consumer's demand for a good increases with the number of other consumers who buy the good, the externality is positive.
- If the amount a consumer demands increases when fewer other consumers have the good, the externality is negative.

Example: The Bandwagon Effect

Bandwagon Effect (increased quantity demanded when more consumers purchase)

The Snob Effect

